On the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems
نویسندگان
چکیده
In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the KurdykaLojasiewicz inequality to address this issue. In particular, we show that many nonconvex problems enjoy the KurdykaLojasiewicz property and establish the global convergence result of the corresponding MM procedure. We also extend our result to a well known method that called CCCP (concave-convex procedure).
منابع مشابه
Composite Optimization by Nonconvex Majorization-Minimization
Many tasks in imaging can be modeled via the minimization of a nonconvex composite function. A popular class of algorithms for solving such problems are majorizationminimization techniques which iteratively approximate the composite nonconvex function by a majorizing function that is easy to minimize. Most techniques, e.g. gradient descent, utilize convex majorizers in order guarantee that the ...
متن کاملMajorization-Minimization Algorithms for Wavelet-Based Image Restoration
Standard formulations of image/signal deconvolution under wavelet-based priors/regularizers lead to very high-dimensional optimization problems involving the following difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead to objective functions which are nonquadratic, usually nondifferentiable, and sometimes even nonconvex; the presence of the convolution operator destroys the separ...
متن کاملStructured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis
Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its convex counterpart. This paper aims to take one step i...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملStochastic Majorization-Minimization Algorithms for Large-Scale Optimization
Majorization-minimization algorithms consist of iteratively minimizing a majorizing surrogate of an objective function. Because of its simplicity and its wide applicability, this principle has been very popular in statistics and in signal processing. In this paper, we intend to make this principle scalable. We introduce a stochastic majorization-minimization scheme which is able to deal with la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.07791 شماره
صفحات -
تاریخ انتشار 2015